QUAST
First run QUAST on all the cells: (SLURM-compatible step)
BascetMapCell(
bascetRoot,
withfunction = "_quast",
inputName = "skesa", #or other source of contigs
outputName = "quast"
)
Then aggregate the results for visualization. This example caches the result to speed up reloading; this is optional
quast_aggr <- BascetCacheComputation(bascetRoot,"cache_quast",MapListAsDataFrame(BascetAggregateMap(
bascetRoot,
"quast",
aggr.quast
)))
Abricate
First run Abricate on all the cells. The NCBI database is used by default. See ListDatabaseAbricate() for a list of other databases
BascetMapCellAbricate(
bascetRoot,
inputName = "skesa" #or other source of contigs
)
Then aggregate the results for visualization. This example caches the result to speed up reloading; this is optional
quast_aggr <- BascetCacheComputation(bascetRoot,"cache_abricate",MapListAsDataFrame(BascetAggregateMap(
bascetRoot,
"abricate",
aggr.abricate
)))
Bakta
First download a database:
DownloadDatabaseBakta(
dbdir="~/bakta", #create directory before running command
dbtype="light"
)
You can run then run Bakta on all cells: (SLURM-compatible step)
### ....
BascetMapCellBakta(
bascetRoot,
db = "~/bakta",
inputName = "skesa", #or other source of contigs
)
Then aggregate the results for visualization. This example caches the result to speed up reloading; this is optional
quast_aggr <- BascetCacheComputation(bascetRoot,"cache_bakta",MapListAsDataFrame(BascetAggregateMap(
bascetRoot,
"bakta",
aggr.bakta
)))